

 ADVANCED DATABASE MANAGEMENT
SYSTEM

Question 1.) What do you mean by Normalization ? How BCNF is different from
3NF?

Answer.:- Normalization is a fundamental concept in database design, aimed at
structuring data efficiently to minimize redundancy and dependency. It involves
breaking down large tables into smaller, related tables while ensuring data integrity
and reducing anomalies. This process adheres to a set of rules known as normal
forms, such as First Normal Form (1NF), Second Normal Form (2NF), Third Normal
Form (3NF), Boyce-Codd Normal Form (BCNF), and Fourth Normal Form (4NF).

Difference between 3NF and BCNF.

Third Normal Form (3NF): In the context of 3NF, a table is considered to be in
third normal form if it satisfies two conditions:

1.2NF Compliance: It meets the requirements of Second Normal Form, meaning that
it has no partial dependencies. Every non-prime attribute (an attribute not part of any
candidate key) is fully functionally dependent on the entire candidate key.

2.Non-Transitive Dependencies: All non-prime attributes are non-transitively
dependent on every candidate key. This ensures that attributes depend only on the
primary key and not on other non-key attributes.

For instance, imagine a table where we have information about students and their
courses. In 3NF, we ensure that student information (like their address or contact
details) doesn't depend on the courses they take but solely on their unique identifier,
such as a student ID.

Boyce-Codd Normal Form (BCNF):

BCNF is a higher level of normalization compared to 3NF, setting stricter criteria for
table structure. A table is in BCNF if it satisfies two conditions:

1.3NF Compliance: It already adheres to the rules of Third Normal Form, meaning
it's free from transitive dependencies.

2. Superkey Dependency: For every functional dependency (A → B) in the table, the
determinant (A) must be a superkey.

The distinction here lies in BCNF's requirement for every dependency to be based on
a superkey, which is a set of attributes that uniquely identifies a tuple in a table. This
ensures that the determinants of functional dependencies are superkeys, providing a
higher level of data integrity and eliminating certain anomalies that might exist in
3NF.

Consider a scenario where we have a table of employees where the employee ID is
the primary key. In BCNF, any attribute (like the department or project they work on)
must be fully dependent on the employee ID, a superkey, to maintain BCNF
compliance.

In summary, while both 3NF and BCNF aim to reduce redundancy and dependency
issues in databases, BCNF takes an additional step to ensure that every functional
dependency in a table is based on a superkey, thus offering a more stringent level of
data organization and integrity.

Set I

Question 2.) Explain the concept of serializability and Recoverability. Illustrate
how to manage rollbacks by locking.

Answer.:- Serializability and recoverability are essential concepts in database management
systems that ensure the consistency and reliability of transactions.

Serializability:

Serializability refers to the property of a database transaction schedule, ensuring that
concurrent execution of transactions produces results equivalent to a sequential execution. In
simpler terms, it ensures that the final state of the database remains consistent regardless of
the order in which transactions are executed concurrently.

There are two key forms of serializability:

1.Conflict Serializability: This concept relies on the notion of conflicting operations between
transactions. Two operations conflict if they belong to different transactions, operate on the
same data item, and at least one of them is a write operation. A schedule is conflict
serializable if it's equivalent to a serial schedule (one transaction executing at a time) where
the order of conflicting operations is maintained.

2.View Serializability: This form of serializability considers the read and write dependencies
between transactions. A schedule is view serializable if it preserves the read and write
dependencies among transactions.

Recoverability:

Recoverability in database systems refers to the ability to restore the database to a consistent
state after a transaction failure or system crash. The recoverability concept ensures that once a
transaction commits, its changes become durable and won't be lost even in the event of a
system failure.

Now, managing rollbacks using locking mechanisms involves ensuring the integrity of data
and maintaining recoverability. Locking is a method used to control concurrent access to data,
preventing conflicts and ensuring transaction consistency.

When a transaction begins, it acquires locks on the data items it intends to access or modify.
There are various types of locks, such as shared locks (read-only) and exclusive locks (write).
These locks prevent other transactions from accessing the same data simultaneously in a way
that could cause inconsistencies or conflicts.

Rollbacks are managed through locking in the following manner:

1.Transaction Initiation: When a transaction begins, it acquires appropriate locks on the data
it needs to access or modify. For instance, if a transaction intends to update a certain row in a
table, it acquires an exclusive lock on that row.

2. Transaction Execution: During the execution phase, the transaction performs its
operations on the locked data items. These operations can include reads, writes, or
modifications.

3. Commit or Rollback: If the transaction completes successfully, it commits, and the
changes made are made permanent. However, if an error occurs or the transaction needs to be
rolled back due to some reason, the system releases the locks held by the transaction,
reverting any changes made by it to ensure database consistency.

Rollbacks, in this context, involve releasing locks held by the transaction, thereby undoing its
changes and reverting the data to its original state. This ensures that even if a transaction fails
or needs to be aborted, the database remains in a consistent and recoverable state by
managing the locks effectively.

Question 3.) What do you mean by data Model? Explain different types of data
models by giving suitable examples.
Answer.:- A data model is a conceptual representation of data structures, relationships,
constraints, and rules used to describe and organize data. It serves as a blueprint for designing
databases, allowing us to understand how data is stored, accessed, and manipulated within a
database system. Different types of data models offer varying levels of abstraction and
describe data from different perspectives.

Types of Data Models:

1. Hierarchical Data Model: In a hierarchical model, data is organized in a tree-like
structure, with a single root that branches out into multiple levels. Each child node can have
only one parent node, and this model is commonly used in hierarchical databases. An example
is the **IMS (Information Management System)** database by IBM, where data is organized
in a parent-child relationship, such as a company's organizational chart.

2.Network Data Model: The network model extends the hierarchical model by allowing each
child node to have multiple parent nodes. This structure is represented as a graph, allowing
more complex relationships. The **CODASYL (Conference on Data Systems Languages)**
database is an example, often used in applications where entities have multiple connections,
like a student participating in multiple courses.

3.Relational Data Model: The relational model organizes data into tables (relations)
consisting of rows (tuples) and columns (attributes). Relationships between tables are
established using keys, such as primary and foreign keys, enabling efficient querying and
manipulation. Examples include **MySQL, PostgreSQL, and Oracle databases**, where data
is stored in structured tables like employee details in one table and department details in
another, linked by keys.

4.Entity-Relationship Model: The ER model focuses on conceptualizing data in terms of
entities (objects or concepts) and their relationships. Entities are represented as rectangles,
relationships as diamonds, and attributes as ovals in an ER diagram. This model helps in
visualizing and understanding the relationships between different entities. For instance, a
university database might have entities like Student, Course, and Professor, each with their
attributes and relationships.

5.Object-Oriented Data Model: In an object-oriented model, data is represented as objects,
similar to those in object-oriented programming. Objects encapsulate data and behavior, and
they can have attributes and methods. This model is beneficial for representing real-world
entities and their interactions. Examples include **Object-oriented databases like db4o**,
where complex data structures and relationships can be modeled more naturally.

6.Document Data Model: Document databases store data in a semi-structured format,
typically using JSON or XML documents. These documents can contain various data types
and nested structures, providing flexibility in storing unstructured or semi-structured data.
MongoDB is an example of a document-oriented database where data is stored in JSON-like
documents.

Each data model offers its own strengths and is suitable for different types of applications and
scenarios. Choosing the right data model depends on factors such as the nature of the data, the
complexity of relationships, scalability requirements, and the intended use of the database
system.

Question 4.) Explain the concept of database recovery management. Discuss the
different levels of backup used for recovering data.

Answer.:- Database recovery management involves strategies and techniques to ensure that
data remains consistent and recoverable in the event of failures, system crashes, or errors. It
encompasses methods to restore the database to a previously consistent state and minimize
data loss. A crucial aspect of recovery management is the use of backups at different levels to
facilitate data restoration.

Levels of Backup for Data Recovery:

1.Full Backup: A full backup captures a complete copy of the entire database at a specific
point in time. It includes all data, configurations, and structures within the database. Full
backups are comprehensive but can be time-consuming and resource-intensive, especially for
large databases. They serve as a baseline for recovery operations.

2.Differential Backup: Differential backups contain only the data that has changed since the
last full backup. It captures the changes made since the last full backup, enabling faster
backups compared to full backups. During a recovery process, a differential backup is
combined with the latest full backup to restore the database to a more recent state than the last
full backup.

3.Incremental Backup: Incremental backups store changes made since the last backup,
whether it's a full backup or an incremental backup. They are smaller in size compared to
differential backups as they only capture changes since the last backup, reducing storage
requirements and backup duration. During recovery, incremental backups need to be applied
sequentially, starting from the last full backup, followed by subsequent incremental backups
in chronological order until the point of failure.

4.Transaction Log Backup: Transaction logs record all transactions and changes made to the
database. Transaction log backups capture these changes at regular intervals. They are crucial
for point-in-time recovery, allowing the restoration of the database to a specific moment by
applying transaction log backups up to that point. This level of backup provides granular
recovery options.

Database Recovery Techniques:

1.Restore: The restore process involves replacing the current, possibly corrupted, data with
the data from a backup. It typically starts with a full backup and may involve applying
differential or incremental backups to reach the desired recovery point. Transaction logs may
also be applied to restore the database to a specific transaction or time.

2.Recovery Point Objective (RPO) and Recovery Time Objective (RTO): RPO defines the
maximum tolerable data loss in case of a failure, determining the frequency of backups. RTO
specifies the duration within which a system must be restored after a failure. Different backup
strategies align with these objectives to meet recovery requirements.

3.Point-in-Time Recovery: Transaction logs enable point-in-time recovery, allowing the
database to be restored to a specific moment before the failure occurred. It's valuable for
scenarios where precise recovery to a particular transaction or time is necessary.

4.Backup Verification and Testing: Regularly verifying and testing backups ensures their
integrity and reliability. This practice involves performing test restores to confirm that
backups are viable for recovery purposes.

Effective database recovery management involves a combination of backup strategies tailored
to the organization's RPOs and RTOs. It ensures data durability, minimizes downtime, and
safeguards against potential data loss due to various failures or issues.

Set II

Question 5.a.) What is a persistent programming language? How can it be
differentiated with embedded SQL? Illustrate

Answer.:- A persistent programming language refers to a programming language that
supports the storage and retrieval of data from a database directly within the language itself. It
integrates database functionality seamlessly into the language's constructs, allowing for
persistent storage of data beyond the program's execution and enabling straightforward
interaction with databases.

Persistent programming languages offer features that allow developers to manage data
persistence without explicit SQL statements or separate database interaction layers. These
languages typically include built-in mechanisms to handle object storage, retrieval, and
manipulation directly, abstracting the underlying database operations from the programmer.

On the other hand, embedded SQL refers to the incorporation of SQL statements within a host
programming language like C, Java, or COBOL. Embedded SQL allows developers to embed
SQL queries into their code, leveraging the host language's facilities to communicate with a
database. However, embedded SQL requires explicit handling of SQL statements,
connections, and data fetching, often leading to a mix of SQL and host language code within
the same source file.

The key differentiation lies in how database operations are integrated into the programming
language:

Persistent Programming Language:

 Integrates database functionalities directly into the language constructs.
 Offers native support for data persistence without explicit SQL statements.
 Abstracts the complexities of database interactions, providing a more seamless experience for

developers.
 Examples include languages like MUMPS, GemStone/S, and the earlier versions of

Smalltalk.

Embedded SQL:

 Involves incorporating SQL queries within a host programming language.
 Requires explicit handling of SQL statements, connections, and result handling within the

host language.
 Often leads to a mix of SQL and host language code, which might complicate maintenance

and readability.
 Examples include embedding SQL queries within C/C++, Java, or COBOL using libraries

like JDBC, ODBC, or embedded SQL pre-processors.

In essence, while both persistent programming languages and embedded SQL facilitate
database interactions within applications, persistent languages offer a more integrated and
seamless approach by directly embedding database functionality into the language's core
constructs, reducing the need for explicit SQL handling within the code.

Question 5.b.) Explain the functions and components of DDBMS.
Answer.:- A Distributed Database Management System (DDBMS) is a software system that
manages the storage, retrieval, and access of data spread across multiple locations or nodes
in a network. It's designed to handle the complexities of data distribution, ensuring efficient
and reliable operations across distributed environments.

Functions of DDBMS:

1.Data Distribution and Transparency: DDBMS distributes data across multiple locations
while presenting a unified view of the database to users and applications. It manages data
distribution transparently, allowing users to access and manipulate data without needing to
know its physical location.

2.Replication and Fragmentation: It handles data replication and fragmentation strategies to
improve availability, performance, and fault tolerance. Replication involves maintaining
duplicate copies of data at multiple sites, while fragmentation divides data into smaller units
stored across different nodes.

3.Concurrency Control and Transaction Management: DDBMS ensures concurrent access to
distributed data by implementing techniques like distributed locking and timestamp-based
protocols. It manages transactions spanning multiple nodes, ensuring atomicity, consistency,
isolation, and durability (ACID properties) across the distributed environment.

4.Query Processing and Optimization: DDBMS optimizes query processing by choosing
efficient execution plans across distributed nodes. It evaluates query optimization strategies
considering data distribution, network latency, and processing costs to minimize response
time.

Components of DDBMS:

1.Distributed Data Dictionary: It stores metadata, schema definitions, and location
information about distributed data to facilitate data access and manipulation.

2.Distributed Transaction Manager: Manages distributed transactions by coordinating their
execution across multiple nodes, ensuring their atomicity and consistency.

3.Distributed Query Processor: Responsible for parsing, optimizing, and executing
distributed queries. It decomposes queries, optimizes their execution plans, and coordinates
data retrieval from multiple nodes.

4.Distributed Lock Manager: Handles distributed locking mechanisms to ensure data
consistency and prevent conflicts among concurrent transactions accessing the same data.

5.Distributed Recovery Manager: Manages recovery and fault tolerance by implementing
mechanisms for backup, restore, and transaction logging across distributed nodes.

6.Communication Manager: Controls communication among distributed nodes, handling
data transmission, synchronization, and ensuring reliable message exchange.

DDBMS plays a vital role in enabling efficient and reliable access to data in distributed
environments by effectively managing data distribution, transactions, queries, and
communication across a network of interconnected systems.

Question 6.a.) What are the different types of parƟƟoning techniques? Describe
in detail.
Answer.:- Partitioning techniques are methods used in database management to divide
large tables or indexes into smaller, more manageable subsets called partitions. These
partitions can be stored and accessed independently, allowing for improved performance,
manageability, and scalability. Several types of partitioning techniques include:

1.Range Partitioning: Range partitioning involves partitioning data based on a specified
range of values within a column. For example, a table might be partitioned by date ranges,
where each partition holds data for a specific period (e.g., months or years). This technique
is efficient for time-based or sequential data, enabling easy archiving or purging of old
partitions.

2.List Partitioning: List partitioning involves partitioning data based on discrete values of a
specified column. Each partition holds rows that match specific values defined in a list. For
instance, a table might be partitioned by regions, where each partition stores data related to
a particular geographic area.

3.Hash Partitioning: Hash partitioning distributes data across partitions based on a hash
function applied to a specified column's values. The hash function determines the partition
where each row will reside. It evenly distributes data, useful for load balancing and avoiding
hotspots, but doesn't support range-based queries efficiently.

4.Composite Partitioning: Composite partitioning combines multiple partitioning methods to
create subpartitions within each partition. For instance, a table might be range-partitioned
by date and then list-partitioned by region within each date range. This technique offers
more flexibility and granularity in managing data.

5.Round-Robin Partitioning: Round-robin partitioning evenly distributes data across
partitions in a cyclic manner, assigning rows in a sequential order to different partitions. This
technique is simple but doesn't consider data characteristics and might not optimize for
query performance.

6.Subpartitioning: Subpartitioning divides each partition further into smaller units called
subpartitions. It's often used in combination with other partitioning methods to increase
manageability and parallelism, allowing for finer control over data storage and retrieval.

Each partitioning technique has its strengths and is chosen based on factors such as data
distribution, query patterns, maintenance requirements, and the nature of the data being
stored. Properly chosen partitioning strategies can significantly enhance database
performance and scalability.

Question 6.b.) What is the difference between temporal and mulƟmedia
database?
Answer.:- Temporal and multimedia databases are two distinct types of databases that
cater to different data models and purposes, focusing on managing specific types of data.

Temporal Databases: Temporal databases are designed to manage time-varying data,
emphasizing the storage and retrieval of information that changes over time. They capture
and maintain historical versions of data, allowing users to query and analyze data as it
existed at different points in time. Temporal databases track not only current data but also its
past and future variations, enabling historical analysis and trend identification.

These databases incorporate time as a fundamental dimension, providing features like valid
time (time when data is valid), transaction time (time when data was recorded), and bi-
temporal aspects (valid time and transaction time combined). Examples include systems for
historical records, financial data analysis, and trend forecasting.

Multimedia Databases: Multimedia databases are designed to handle multimedia data
types such as images, audio, video, and other non-traditional data formats. They focus on
storing, indexing, retrieving, and managing multimedia content efficiently. These databases
store and manage large volumes of multimedia data, often requiring specialized indexing and
retrieval mechanisms tailored to the nature of multimedia content.

Multimedia databases support content-based retrieval, where searches are based on the
content of the multimedia objects rather than just metadata. They utilize techniques such as
feature extraction, similarity-based retrieval, and content analysis to enable efficient retrieval
of multimedia data. Examples include databases for image libraries, video repositories, and
content management systems handling diverse media types.

Key Differences:

1.Data Focus: Temporal databases manage time-varying data, emphasizing temporal aspects
and historical variations. Multimedia databases focus on storing and retrieving multimedia
content like images, audio, and video.

2.Data Type: Temporal databases deal with time-related attributes and historical data
versions. Multimedia databases handle various types of media files and content, requiring
specialized handling and retrieval mechanisms.

3.Use Cases: Temporal databases are useful for historical data analysis, trend identification,
and tracking changes over time. Multimedia databases are employed in systems requiring
efficient storage, retrieval, and management of multimedia content, such as media libraries
and content repositories.

Both types of databases serve specific niches, addressing unique data management needs
and providing specialized capabilities to manage time-varying data or multimedia content
effectively.

